Метод Монте-Карло

Метод Монте-Карло, или метод стохастического моделирования (Monte Carlo simulation), основан на моделировании случайных процессов с заданными характеристиками. В отличие от метода исторического моделирования в методе Монте-Карло изменения цен активов генерируются псевдослучайным образом в соответствии с заданными параметрами распределения, например математическим ожиданием μ и волатильностью σ. Имитируемое распределение может быть, в принципе, любым, а количество сценариев – весьма большим (до нескольких десятков тысяч). В остальном метод аналогичен методу исторического моделирования.

Метод Монте-Карло для одного фактора риска

Моделирование траектории цен производится по различным моделям. Например, распространенная модель геометрического броуновского движения дает в итоге следующие выражения для моделирования цен S на каждом шаге процесса, состоящего из очень большого количества шагов, охватывающих период T (1):


Воспользовавшись определением винеровского процесса, уравнение (1) можно записать в дискретной форме:


Можно использовать и иные модели эволюции цен, например экспоненциальную.

Траектория цен – это последовательность псевдослучайным образом смоделированных цен, начиная от текущей цены и заканчивая ценой на некотором конечном шаге, например на тысячном или десятитысячном. Чем больше число шагов, тем выше точность метода.

Каждая траектория представляет собой сценарий, по которому определяется цена на последнем шаге исходя из текущей цены. Затем производится полная переоценка портфеля по цене последнего шага и расчет изменения его стоимости для каждого сценария. Оценка VaR производится по распределению изменений стоимости портфеля.

Генерация случайных чисел в методе Монте-Карло состоит из двух шагов. Сначала можно воспользоваться генератором случайных чисел, равномерно распределенных на интервале между 0 и 1*. Затем, используя как аргументы полученные случайные числа, вычисляют значения функций моделируемых распределений.

Однако следует помнить, что генераторы случайных чисел работают на детерминированных алгоритмах и воспроизводят так называемые «псевдослучайные числа», поскольку с некоторого момента последовательности этих псевдослучайных чисел начинают повторяться, т. е. они не являются независимыми.

В простейших генераторах это происходит уже через несколько тысяч генераций, а в более сложных– через миллиарды генераций. Если массив случайных чисел начинает повторяться слишком быстро, то метод Монте-Карло перестает моделировать случайные, независимые сценарии и оценка VaR начинает отражать ограниченность генератора, а не свойства портфеля. Оптимальное количество шагов в процессе зависит от объема выборки, состава портфеля и сложности составляющих его инструментов и др.

Метод Монте-Карло является наиболее технически сложным из всех описанных методов расчета VaR. Кроме того, для выполнения расчетов в полном объеме необходимы значительные вычислительные мощности и временные ресурсы. Современные компьютеры пока еще не позволяют обрабатывать информацию в режиме реального времени, как этого требуют трейдеры, если риск-менеджеры хотят устанавливать VaR-лимиты на величину открытых позиций с помощью метода Монте-Карло.

Существует вариант метода Монте-Карло, согласно которому можно не задавать какое-либо конкретное распределение для моделирования цен, а использовать непосредственно исторические данные. Подобно методу исторического моделирования, на основе ретроспективы моделируются гипотетические цены, но их последовательность не является единственной и не ограничена глубиной периода ретроспективы, поскольку выборка производится с возвращением (bootstrap), т. е. возмущение из исторических данных выбирается случайным образом, и каждый раз в выборе участвуют все данные.

Такое построение выборки исторических данных позволяет учесть эффект «толстых хвостов» и скачки цен, не строя предположений о виде распределения. Это несомненные достоинства метода, который, в отличие от метода исторического моделирования, позволяет рассмотреть не какую-либо одну траекторию цен (сценарий), а сколь угодно много, что, как правило, повышает точность оценок. Недостатками данной методики являются низкая точность при малых объемах выборки и использование предположения о независимости доходностей во времени.

 

Метод Монте-Карло для портфеля активов

Чтобы проводить моделирование по методу Монте-Карло для многофакторного процесса, можно точно так же моделировать каждый из k рассматриваемых факторов исходя из сгенерированных случайных чисел:


или для дискретного времени:


С целью учета корреляции между факторами необходимо, чтобы случайные величины εi и εj точно так же коррелировали между собой. Для этого используется разложение Холецкого (Cholesky factorization), суть которого состоит в разложении корреляционной матрицы на две (множители Холецкого) и использовании их для вычисления коррелированных случайных чисел.

Корреляционная матрица является симметричной и может быть представлена произведением треугольной матрицы низшего порядка с нулями в верхнем правом углу на такую же транспонированную матрицу. Например, для случая двух факторов имеем:


Коррелированные случайные числа ε1, и ε2 получаются путем перемножения множителя Холецкого и вектора независимых случайных чисел η:


При расчетах необходимо правильно выбрать количество множителей, чтобы получилась положительно определенная матрица.

Достоинства метода Монте-Карло

  • Высокая точность расчетов.
  • Высокая точность применительно к инструментам с нелинейными ценовыми характеристиками.
  • Возможность моделирования любых исторических и гипотетических распределений, учет эффекта «толстых хвостов» и скачков цен (вега-риска).

Недостатки метода Монте-Карло

  • Высокая сложность моделей и соответственно высокий риск неадекватности моделей.
  • Высокие требования к вычислительной мощности и значительные затраты времени на проведение расчетов.

Похожие статьи

Рассчитать стоимость